32 research outputs found

    Analysis of pattern dynamics for a nonlinear model of the human cortex via bifurcation theories

    Get PDF
    This thesis examines the bifurcations, i.e., the emergent behaviours, for the Waikato cortical model under the influence of the gap-junction inhibitory diffusion D₂ (identified as the Turing bifurcation parameter) and the time-to-peak for hyperpolarising GABA response γi (i.e., inhibitory rate-constant, identified as the Hopf bifurcation parameter). The cortical model simplifies the entire cortex to a cylindrical macrocolumn (∼ 1 mm³) containing ∼ 10⁵ neurons (85% excitatory, 15% inhibitory) communicating via both chemical and electrical (gap-junction) synapses. The linear stability analysis of the model equations predict the emergence of a Turing instability (in which separated areas of the cortex become activated) when gap-junction diffusivity is increased above a critical level. In addition, a Hopf bifurcation (oscillation) occurs when the inhibitory rate-constant is sufficiently small. Nonlinear interaction between these instabilities leads to spontaneous cortical patterns of neuronal activities evolving in space and time. Such model dynamics of delicately balanced interplay between Turing and Hopf instabilities may be of direct relevance to clinically observed brain dynamics such as epileptic seizure EEG spikes, deep-sleep slow-wave oscillations and cognitive gamma-waves. The relationship between the modelled brain patterns and model equations can normally be inferred from the eigenvalue dispersion curve, i.e., linear stability analysis. Sometimes we experienced mismatches between the linear stability analysis and the formed cortical patterns, which hampers us in identifying the type of instability corresponding to the emergent patterns. In this thesis, I investigate the pattern-forming mechanism of the Waikato cortical model to better understand the model nonlinearities. I first study the pattern dynamics via analysis of a simple pattern-forming system, the Brusselator model, which has a similar model structure and bifurcation phenomena as the cortical model. I apply both linear and nonlinear perturbation methods to analyse the near-bifurcation behaviour of the Brusselator in order to precisely capture the dominant mode that contributes the most to the final formed-patterns. My nonlinear analysis of the Brusselator model yields Ginzburg-Landau type amplitude equations that describe the dynamics of the most unstable mode, i.e., the dominant mode, in the vicinity of a bifurcation point. The amplitude equations at a Turing point unfold three characteristic spatial structures: honeycomb Hπ, stripes, and reentrant honeycomb H₀. A codimension-2 Turing–Hopf point (CTHP) predicts three mixed instabilities: stable Turing–Hopf (TH), chaotic TH, and bistable TH. The amplitude equations precisely determine the bifurcation conditions for these instabilities and explain the pattern-competition mechanism once the bifurcation parameters cross the thresholds, whilst driving the system into a nonlinear region where the linear stability analysis may not be applicable. Then, I apply the bifurcation theories to the cortical model for its pattern predictions. Analogous to the Brusselator model, I find cortical Turing pattens in Hπ, stripes and H₀ spatial structures. Moreover, I develop the amplitude equations for the cortical model, with which I derive the envelope frequency for the beating-waves of a stable TH mode; and propose ideas regarding emergence of the cortical chaotic mode. Apart from these pattern dynamics that the cortical model shares with the Brusselator system, the cortical model also exhibits “eye-blinking” TH patterns latticed in hexagons with localised oscillations. Although we have not found biological significance of these model pattens, the developed bifurcation theories and investigated pattern-forming mechanism may enrich our modelling strategies and help us to further improve model performance. In the last chapter of this thesis, I introduce a Turing–Hopf mechanism for the anaesthetic slow-waves, and predict a coherence drop of such slow-waves with the induction of propofol anaesthesia. To test this hypothesis, I developed an EEG coherence analysing algorithm, EEG coherence, to automatically examine the clinical EEG recordings across multiple subjects. The result shows significantly decreased coherence along the fronto-occipital axis, and increased coherence along the left- and right-temporal axis. As the Waikato cortical model is spatially homogenous, i.e., there are no explicit front-to-back or right-to-left directions, it is unable to produce different coherence changes for different regions. It appears that the Waikato cortical model best represents the cortical dynamics in the frontal region. The theory of pattern dynamics suggests that a mode transition from wave–Turing–wave to Turing–wave–Turing introduces pattern coherence changes in both positive and negative directions. Thus, a further modelling improvement may be the introduction of a cortical bistable mode where Turing and wave coexist

    EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory.

    Get PDF
    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing-Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05-1.5 Hz) slow-wave coherence between frontal, occipital, and frontal-occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex

    From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research"

    Get PDF
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome

    Rethinking Quality Assurance for Crowdsourced Multi-ROI Image Segmentation

    No full text
    Collecting high quality annotations to construct an evaluation dataset is essential for assessing the true performance of machine learning models. One popular way of performing data annotation is via crowdsourcing, where quality can be of concern. Despite much prior work addressing the annotation quality problem in crowdsourcing generally, little has been discussed in detail for image segmentation tasks. These tasks often require pixel-level annotation accuracy, and is relatively complex when compared to image classification or object detection with bounding-boxes. In this paper, we focus on image segmentation annotation via crowdsourcing, where images may not have been collected in a controlled way. In this setting, the task of annotating may be non-trivial, where annotators may experience difficultly in differentiating between regions-of-interest (ROIs) and background pixels. We implement an annotation process and examine the effectiveness of several in-situ and manual quality assurance and quality control mechanisms. We implement an annotation process on a medical image annotation task and examine the effectiveness of several in-situ and manual quality assurance and quality control mechanisms. Our observations on this task are three-fold. Firstly, including an onboarding and a pilot phase improves quality assurance as annotators can familiarize themselves with the task, especially when the definition of ROIs is ambiguous. Secondly, we observe high variability of annotation times, leading us to believe it cannot be relied upon as a source of information for quality control. When performing agreement analysis, we also show that global-level inter-rater agreement is insufficient to provide useful information, especially when annotator skill levels vary. Thirdly, we recognize that reviewing all annotations can be time-consuming and often infeasible, and there currently exist no mechanisms to reduce the workload for reviewers. Therefore, we propose a method to create a priority list of images for review based on inter-rater agreement. Our experiments suggest that this method can be used to improve reviewer efficiency when compared to a baseline approach, especially if a fixed work budget is required

    Enhanced Antitumor Efficacy of a Vascular Disrupting Agent Combined with an Antiangiogenic in a Rat Liver Tumor Model Evaluated by Multiparametric MRI

    Get PDF
    <div><p>A key problem in solid tumor therapy is tumor regrowth from a residual viable rim after treatment with a vascular disrupting agent (VDA). As a potential solution, we studied a combined treatment of a VDA and antiangiogenic. This study was approved by the institutional ethical committee for the use and care of laboratory animals. Rats with implanted liver tumors were randomized into four treatment groups: 1) Zd6126 (Zd); 2) Thalidomide (Tha); 3) Zd in combination with Tha (ZdTha); and 4) controls. Multiparametric MRIs were performed and quantified before and after treatment. Circulating endothelial progenitor cells (EPCs) and plasma stromal cell-derived factor-1α (SDF-1α) were monitored. Tumor apoptosis, necrosis, and microvessels were verified by histopathology. A single use of Zd or Tha did not significantly delay tumor growth. The combined ZdTha showed enhanced antitumor efficacy due to synergistic effects; it induced a cumulative tumor apoptosis or necrosis, which resulted in significant delay in tumor growth and reduction in the viable tumor rim; it also reduced tumor vessel permeability; and it improved tumor hemodynamic indexes, most likely via a transient normalization of tumor vasculature induced by Tha. A stepwise linear regression analysis showed that the apparent diffusion coefficient was an independent predictor of tumor growth. We found no significant increases in Zd-induced circulating EPCs or plasma SDF-1α. ZdTha showed improved therapeutic efficacy in solid tumors compared to either agent alone. The therapeutic effects were successfully tracked <em>in vivo</em> with multiparametric MRI.</p> </div
    corecore